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We present a general framework to deal with forward and backward components of the electromagnetic field
in axially invariant nonlinear optical systems, which include those having any type of linear or nonlinear
transverse inhomogeneities. With a minimum amount of approximations, we obtain a system of two first-order
equations for forward and backward components, explicitly showing the nonlinear couplings among them. The
modal approach used allows for an effective reduction of the dimensionality of the original problem from 3
+1 (three spatial dimensions plus one time dimension) to 1+1 (one spatial dimension plus one frequency
dimension). The new equations can be written in a spinor Dirac-like form, out of which conserved quantities
can be calculated in an elegant manner. Finally, these equations inherently incorporate spatiotemporal cou-
plings, so that they can be easily particularized to deal with purely temporal or purely spatial effects. Nonlinear
forward pulse propagation and nonparaxial evolution of spatial structures are analyzed as examples.
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I. INTRODUCTION

Nonlinear propagation of light pulses in dielectric media
such as optical fibers has been traditionally modeled using
the nonlinear Schrödinger equation(NLSE) [1]. However, it
is well known that the NLSE needs modifications to describe
a number of higher-order nonlinear effects which become
important at increasing powers and for short pulses. Re-
cently, access to new optical systems in which nonlinearities
can be considerably enhanced together with the experimental
availability of ultrashort pulses has pushed the description
based on the NLSE and its modified versions to a limit. A
typical example of this scenario is provided by the phenom-
enon of supercontinuum generation in photonic crystal fibers
[2], which requires a specific modeling that goes beyond
approaches based on conventional versions of the NLSE
[3,4]. These approaches are expressed in evolution equations
that differ from the NLSE in the amount of approximations
needed to achieve them. We can mention the so-called gen-
eralized NLSE[5,6], the nonlinear envelope equation(NEE)
[7], the forward Maxwell equation(FME) [4], and the uni-
directional pulse propagation equation(UPPE) [8]. Briefly,
the aim of these equations is to describe pulse propagation in
the regime where the frequency width of the pulse is com-
parable to the carrier frequency, which, in turn, translates
into the fact that the usual approaches such as the slowly
varying approximation no longer hold. The specific form of
these equations is, on the one hand, the result of applying
some other different approximations—e.g., assuming propa-
gation in an homogeneous medium(NEE and UPPE) or
single-mode propagation in fibers(generalized NLSE and

FME). On the other hand, two common features of all of
them are the neglect of the backward components of the
electromagnetic field and their first-order character.

The role played by backward components has been previ-
ously analyzed for an homogeneous medium[9]. In this pa-
per we explicitly unveil their role but in the more general
case of an axially invariant inhomogenous nonlinear medium
by explicitly finding the coupled first-order equations that
drive the forward and backward components of the electro-
magnetic field in an axially invariant nonlinear system. We
will show that these first-order forward-backward equations
(FBE’s) are equivalent to the original second-order equations
for the electric components of the electromagnetic field. The
FBE’s will provide us with a common framework that can
encompass different nonlinear phenomena. In fact, since
these equations explicitly manifest the couplings between
spatial and time-frequency degrees of freedom typical of
spatio-temporal phenomena, they can be easily applied to
describe either purely temporal or purely spatial effects
within the same framework, revealing the total generality of
this formalism.

The paper is organized as follows. In Sec. II we derive the
most general modal second-order equation for nonlinear
propagation in an axially invariant inhomogenous medium
and we explain the nature of the only approximation needed
to obtain it. In Sec. III we demonstrate the equivalence be-
tween the modal second-order equation and the first-order
FBE’s. In Sec. IV we introduce a spinor representation to
obtain a Dirac-like form of the FBE’s. In Sec. V we derive
the conserved quantities associated with the FBE’s and ana-
lyze them in the light of phase symmetries. Finally, in Sec.

PHYSICAL REVIEW E 71, 016601(2005)

1539-3755/2005/71(1)/016601(10)/$23.00 ©2005 The American Physical Society016601-1



VI we examine two different nonlinear phenomena occurring
in axially invariant inhomogeneous dielectric media in the
light of the FBE’s: forward pulse propagation and non-
paraxial evolution of spatial structures.

II. MODAL SECOND-ORDER EQUATION

The most general equation for the propagation of the elec-
tric components of an electromagnetic field in a inhomoge-
neous, isotropic, and spatially local dielectric medium is
given by

¹2Ev − = s= ·Evd + k0
2nv

2Ev = − Gv
NLsEd, s1d

where Ev=Evsx,y,zd is the complexv frequency com-
ponent of the real electric fieldEsx,y,z,td=evEvsx,y,zd
3exps−ivtd, = is the three-dimensional spatial gradient op-
erator,k0=v /c is the vacuum wave number,nv=nvsx,y,zd is
the frequency-dependent refractive index profile of the di-
electric medium, andGv

NL is the function that represents the
local nonlinear response of the medium to the propagating
field. In the most general case, the relative dielectric constant
sev=nv

2d and the nonlinear functionGv
NL can be either spa-

tially local (the case we are considering) or nonlocal if there
exist some type of spatially delayed response effects. Besides
the general wave equation(1), Maxwell’s equations require
the constraint= ·Dv=0 to be satisfied where the displace-
ment fieldDv is itself a function of the propagating electric
field Ev. We assume a spatially local response—that is,Dv

=evsEvdEv. In the case the system presents some type of
anisotropy,evsEvd is a second-order tensor. Here we con-
sider an isotropic medium, so thatevsEvd will be a scalar
function, although the generalization to an anisotropic me-
dium is straightforward. The constraint relation has thus the
form

= · fevsEvdEvg = 0. s2d

In most cases in nonlinear optics, the general constraint(2) is
replaced by the approximated, and much simpler, “scalar”
condition = ·fevsEvdEvg<evsEvd= ·Ev=0, implying that
= ·Ev<0. This approximation is known to work well in a
panoply of nonlinear effects with few and remarkable excep-
tions, related mainly to extreme self-focussing events[8]. In
order to simplify our approach, this approximation will be
assumed throughout, although our main results will remain
valid in a slightlier general context in which the condition
= ·Ev<0 will not be strictly necessary.

Our interest lies in describing propagation in an axially
invariant system—that is, a system in which both the refrac-
tive index profile nvsx,y,zd=nvsx,yd as well as all other
macroscopic nonlinear structural functions, such as nonlinear
susceptibilities, arez independent. In other words, we will
focus on systems for which the axialz dependence is carried
by the propagating fieldEsx,y,zd exclusively. Mathemati-
cally, this property is reflected in the fact that there is no
explicit dependence onz in the nolinear functionGNL. In
these systems, the wave equation(1) and the constraint
= ·Ev<0 merge into a single equation:

S ]2

]z2 + ¹t
2 + k0

2nv
2sx,ydDEv = − Gv

NLsEd, s3d

where now¹t stands for the transverse gradient operator
and the axial second-order derivative has been made explicit.
Let us now perform a modal expansion of the electric field
in terms of the eigenmodes of the linearz-independent
system, described by the linear transverse operatorL0
;¹t

2+k0
2nv

2sx,yd. These modes fulfill the linear eigenvalue
equation

L0Fn
vsx,yd = bn

2svdFn
vsx,yd. s4d

SinceL0 does not mix the spatial(polarization) components
of the electric field, it is proportional to the identity operator
in polarization space. For this reason, its eigenmodes have a
three fold degeneracy in polarization indices. Therefore, ev-
ery multiplet of eigenmodes is constituted by three linearly
independent modes, each one proportional to a three-
dimensional vector belonging to a basis ofR3. For simplicity,
we can consider this basis to be the canonical one
Fnssd

v sx,yd=Fn
vsx,ydussd ss=1,2,3d where the components

of the canonical basishus1d , us2d , us3dj satisfy ussda=dsa sa
=1,2,3d. If the system is lossless, thennv=nv

* and L0 is
self-adjoint; if it is not, we consider the real part ofnv in Eq.
(4) so thatL0 is again self-adjoint. In this way, the set ofL0
eigenmodeshFnssd

v j forms an orthogonal basis of functions
of the transverse coordinates that can be used to expand the
electric fieldEvsx,y,zd at a givenz:

Evsx,y,zd = o
n,s

cn,ssv;zdFn
vsx,ydussd

or, in components,

Es
vsx,y,zd = o

n

cnssw;zdFn
vsx,yd. s5d

Of course, the modal expansion(5) has to be understood
as a generalized form of expansion over the entire spectrum
of the L0 operator, in which both discrete and continuum
parts of the spectrum can coexist. In practice, however, when
dealing with numerical applications, the continuum part is
discretized by means of some convenient election of bound-
ary conditions, so that the discretized form of the expansion
(5) is, in fact, the one that is used. Since the election of
boundary conditions is an artifact of the simulation, one has
to make sure that physical results are independent of them.

Now, we substitute the modal expansion(5) into Eq. (3),
we multiply this equation byFm

v* , taking into account that
L0Fn

v=bn
2Fn

v, and after integrating the result over the entire
transverse space(considering, without loss of generality, that
the functionsFn

v are orthonormal:eR2Fm
v*Fn

v=dnm), we ob-
tain the evolution equation for the modal expansion coeffi-
cientsc:

S ]2

]z2 + bn
2svdDcnssv;zd = − Fns

v scd. s6d

The equation above represents an effective lower-
dimensional equation[1+1 dimensions, instead of the 3+1
dimensions of the original equation(3)] for the coefficients
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cnssv ;zd. Physically, they represent the frequency, modal,
and polarization spectral content of the propagating electric
field. The nonlinear functionFns

v scd is given by

Fns
v scd =E

R2
Fn

v*Gvs
NLso cnsFn

vd . s7d

This function is an input of the effective equation(6) because
it is known once the linear amplitudes are determined out of
the linear eigenvalue problem in Eq.(4). The same applies to
the propagation constantsbnsvd, which also appear as an
input.

As an example of the nonlinear functionFns
v scd, it

is instructive to consider the case of a Kerr nonlinearity,
for which Gvs

NL=v2/c2ev2v3
x

st8s8t

s3d sv ,v2,v3,v+v2−v3d
3Et8

v2*Es8
v3Et

v+v2−v3. From the definition of the nonlinear
function (7), one finds thatF has the form

Fns
v scd = o

m8n8m

o
t8s8t

3E
v2v3

cm8t8
v2* Tnm8n8m

st8s8t
sv,v2,v3,v + v2

− v3dcn8s8
a3 cmt

v+v2−v3.

Thus, for a Kerr nonlinearity, all the information about the
nonlinear properties of the system is encoded in the tensor
function T. As a first approximation, one could say that this
tensor function depends on frequency both through the sus-
ceptibility xs3d and through the overlapping integral of linear
mode amplitudes:

Tnm8n8m

st8s8t
sv,v2,v3,v + v2 − v3d

< v2/c2xst8s8t
s3d sv,v2,v3,v + v2 − v3d

3E
R2

Fn
v*Fm8

v2*
Fn8

v3Fm
v+v2−v3.

Besides, the dependence on modal indices of theT tensor is
a result of the overlapping of spatial amplitudes, whereas
polarization indices are provided by the third-order suscepti-
bility.

We do not want to get into much detail on the particular
form of the nonlinear function since, for our purposes, it is
not necessary to provide an explicit form forF in Eq. (6).
Only general properties ofF will be used and the latter can
be inferred from the construction previously described.
Along the same line of reasoning, it should be added that the
effective equation(6) remains valid in some cases when the
“scalar” approximation= ·Ev<0 no longer holds. Less re-
strictive approximations can be made in which= ·Dv<0 but
= ·EvÞ0 and, nevertheless, the effective equation(6) re-
tains, formally, its validity. It would differ in the fact that the
values ofb would be now calculated including the missing
vector term in the linear eigenvalue equation(4) and that the
nonlinear functionF would include also terms of vectorial
origin. Again, the analysis of such topics is out of the scope
of this paper, for our aim is to transform the almost com-

pletely general second-order equation(6) into a first-order
formalism in which forward and backward components ex-
plicitly appear.

III. DERIVATION OF FORWARD-BACKWARD
EQUATIONS

A convenient way of considering the effective equation
(6) is as a limit of a equation for a frequency-discretized
spectral functioncns

j szd;cnssv j ;zd. This is a typical situa-
tion in numerical simulations in which the frequency appears
discretized in a Fourier series and one approaches the
continuum-frequency limit numerically or likewise in some
experimental cases where one physically works with fre-
quency combs instead of continuum sources. In such situa-
tions, the frequency discretized version of Eq.(6) is

S d2

dz2 + bnj
2 Dcns

j szd = − Fns
j scd. s8d

The general second-order equation(8), displaying all fre-
quency, modal, and polarization indices, will be our starting
point. The functionFscd includes all nonlinear contributions
in the frequency domain constructed out of Maxwell’s equa-
tions according to the procedure described in the previous
section. As seen above for a Kerr nonlinearity in Maxwell’s
equation, this function provides a cubic behavior in the spec-
tral functionc, which in the discretized frequency version is

Fns
j scd = o

m8n8m

o
t8s8t

o
k8 j8

cm8t8
k8* STnm8n8m

st8s8t

jk8ls j+k8−j8dDcn8s8
l cmt

j+k8−j8,

s9d

where T is a tensor in frequency, modal, and polarization
indices that can be explicitly calculated out of the amplitudes
of the linear fiber modes. However, in order to obtain the
first-order counterpart of the general second-order equation
(8), it is not necessary to specify a particular form for the
nonlinearity functionF. It is interesting to stress again that
both the modal dispersion relationsbnsvd (or its discretized-
frequency versionbnj) andF are inputs that are known once
the mode linear problem is solved. In order to simplify the
notation, we will incorporate the polarization index into the
modal one when dealing with the spectral functionc and the
nonlinear functionF. This is possible because polarization
and modal indices always come together in pairs, so that,
from now on and without loss of generality,n represents the
index pairsn,sd.

We perform now an axial Fourier transform on the spec-
tral functionsc in Eq. (8), defined as

cn
j szd =

1

2p
E dbc̃n

j sbdeibz

or, inversely,

c̃n
j sbd =E dzcn

j szde−ibz.

With this definition, b→−id /dz (or, d/dz→ ib), and,
thus, the axial Fourier transfom of Eq.(8) is given by
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s− b2 + bnj
2 dc̃n

j sbd = − F̃n
j sc̃d, s10d

where F̃sc̃d is the axial Fourier transform of the nonlinear

term in Eq. (8): F̃;FbfFg. Dividing this equation by −b2

+bnj
2 (we assume some kind of “ie” prescription to deal with

the poles of the inverse of this function in theb plane), we
obtain

c̃n
j sbd =

1

b2 − bnj
2 F̃n

j sc̃d. s11d

The function preceding the nonlinear factor in the above
equation is the axial Green function inb space and has single
poles at +bnj and −bnj, corresponding to forward and back-
ward propagation, respectively, for the positive-frequency
part of the spectral functionc̃ (peaked at a positive frequency
+v0). Clearly, we can decompose the Green function in the
contributions corresponding to the two poles by means of the
following identity:

1

sb2 − bnj
2 d

=
1

2bnj
S 1

b − bnj
−

1

b + bnj
D , s12d

which allows us to write Eq.(11) as

c̃ = c̃F + c̃B,

where

sc̃Fdn
j =

1

2bnj

1

b − bnj
F̃n

j sc̃d,

sc̃Bdn
j = −

1

2bnj

1

b + bnj
F̃n

j sc̃d

or, equivalently,

sb − bnjdsc̃Fdn
j =

1

2bnj
F̃n

j sc̃d

sb + bnjdsc̃Bdn
j = −

1

2bnj
F̃n

j sc̃d.

Now, we take the inverse axial Fourier transform of the
above equations, taking into account the previous definitions,
so that, considering that b→−id /dz, Fz

−1sc̃F,Bd
=Fz

−1(FbscF,Bd)=cF,B, and Fz
−1sF̃d=Fz

−1sFbsFdd=F, we can
write the following two first-order equations for forwardsFd
and backwardsBd components:

S− i
d

dz
− bnjDscFdn

j =
1

2bnj
Fn

j scd, s13d

S− i
d

dz
+ bnjDscBdn

j = −
1

2bnj
Fn

j scd, s14d

where the total spectrum is given by the sum of forward and
backward contributions,

c = cF + cB. s15d

Equations(13) and(14) are the exact first-order equations
equivalent to the general second-order equation(8).

Restoring the continuum frequency notationfcj →csvdg,
we obtain the first-order forward-backward equations in the
continuum-frequency limit:

S− i
]

]z
− bnsvdDcF

nsv,zd =
1

2bnsvd
Fn„csv,zd…, s16d

S− i
]

]z
+ bnsvdDcB

nsv,zd = −
1

2bnsvd
Fn„csv,zd…, s17d

whereas the total spectrum is

csv,zd = cFsv,zd + cBsv,zd.

Note that if the backward spectrum is sufficiently small
and it can be approximately neglectedscB<0d, thenc<cF

and only Eq.(13) or (16) matters. It is also interesting to note
that small values of the backward spectrum imply small non-
linearities, as can be checked by going to thecB→0 limit in
Eq. (14) or (17). In such a limit, nonlinearities dissapear
independently of the nature of their origin:Fscd→0. We will
return to this point in the last section of this paper.

IV. SPINOR REPRESENTATION OF THE
FORWARD-BACKWARD EQUATIONS

It is possible to put the first-order FBE’s in a more com-
pact form by using a spinor representation for the forward
and backward spectral functions,cF andcB. We start noticing
that the FBE’s(with discrete-frequency indices) can be re-
written as

S− i
d

dz
− bnjDcF

nj = o
n8 j8

fNnn8
j j 8 scdcF

n8 j8 + Nnn8
j j 8 scdcB

n8 j8g,

S− i
d

dz
+ bnjDcB

nj = o
n8 j8

f− Nnn8
j j 8 scdcF

n8 j8 − Nnn8
j j 8 scdcB

n8 j8g.

s18d

We have assumed that the nonlinear functionF can be
expressed as the action of a field-dependent operatorMscd on

the spectral functionc—that is,Fn
j scd;on8 j8Mnn8

j j 8 scdcn8
j8 . This

is the situation that applies to all type of nonlinearities that
can be expanded in a power series. The simplest case is the

aforementioned Kerr cubic nonlinearity, for whichMnn8
j j 8 scd

=omm8
k8 cm8

k8*T
nm8n8m
jk8 j8s j+k8−j8d

cm
j+k8−j8. Moreover, in conservative

systems—that is, those for which the Hamiltonian is con-
served and real—theM operator is forced to be self-adjoint.
The N operator appearing in Eq.(18) is nothing but

Nnn8
j j 8 scd;1/s2bnjdMnn8

j j 8 scd.
The equations above can also be written in a matrix form
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− i
d

dz
ScF

nj

cB
nj D − bnjS1 0

0 − 1
DScF

nj

cB
nj D

= o
n8 j8

Nnn8
j j 8 scdS 1 1

− 1 − 1
DScF

n8 j8

cB
n8 j8D . s19d

Then, introducing the bispinorc, defined as

cn
j ; ScF

nj

cB
nj D , s20d

and the Pauli matrices

s1 = S0 1

1 0
D, s2 = S0 − i

i 0
D, s3 = S1 0

0 − 1
D ,

noticing that

S 1 1

− 1 − 1
D = s3 + is2,

we see that Eq.(19) can be written in a bispinor form nota-
tion (a sum over repeated indices is assumed)

− i
d

dz
cn

j = fsbn8 j8dnn8d j j 8 + Nnn8
j j 8 ds3 + iNnn8

j j 8 s2gcn8
j8 . s21d

Certainly, N is a nontrivial operator in frequency and
mode spaces. However, it is proportional to the identity op-
erator when acting on theF-B internal degrees of freedom of
the bispinorc. If we use continuum-frequency notation, Eq.
(21) can be written as

− i
]

]z
cnsv,zd = bnsvds3cnsv,zd + o

n8
E dv8Nnn8sv,v8;cd

3ss3 + is2dcn8sv8,zd. s22d

Despite its different appearence, the first-order spinor equa-
tion for the pulse spectrum contains exactly the same infor-
mation on dynamics than the original second-order equation
(8). The spinor representation of the FBE’s has common fea-
tures with the Dirac equation for a particle in 1+1 dimen-
sions. In 1+1 dimensions, the original algebra of 16 434
matrices(Dirac matrices) of the four-dimensional(4D) Dirac
equation is reduced to 4 232 matrices constituted by the
identity and Pauli matrices. The FBE spinor(20), formed by
the forward and backward spectral functions, plays the role
of the Dirac spinor, constituted by the positive and negative-
energy components of the particle wave function. First-order
spinor equations involving forward-backward components
have been also found in the description of different optical
systems such as laser cavities[10,11].

V. CONSERVED QUANTITIES

The goal of this section is to find the conserved quantity
associated to FBE’s in the most general case. Our only as-
sumption will be the conservative and lossless character of
the system, which mathematically will be reflected in the fact
that theM operator is self-adjointsM =M†d and that the dis-

persion relation functionb is real for all modes. We consider
as a starting point the discrete-frequency FBE’s in their
spinor representation(21). Now we proceed to redefine the
labeling of this equation following the same procedure we
used to incorporate polarization indices into modal indices in
Sec. III. Since frequencys jd and modal indicessnd are al-
ways paired together in Eq.(21), we can incorporate both in
a new single index:sn, jd→p, sn8 , j8d→p8. In this way, Eq.
(21) becomes(a sum over repeated indices is assumed, as
before)

− i
d

dz
cp = fsbp8dpp8 + Npp8ds3 + iNpp8s2gcp8. s23d

This form of the equation enables us to introduce the matrix
operatorsC, B, and N, whose elements are given bycp,

bp8dpp8, andNpp8, respectively. Therefore, we can writesĊ
;dC /dzd

− iĊ = HSB +
1

2
B−1MDs3 + i

1

2
B−1Ms2JC, s24d

where we have made use of the relation between theN and
M operators:Npp8=1/s2bpdMpp8⇒N=s1/2dB−1M. We will
also need the adjoint of the above equation:

iĊ† = C†HSB +
1

2
MB−1Ds3 − i

1

2
MB−1s2J , s25d

where we have used the properties thatB=B† (since B is
diagonal andb is real) and M =M†, together with the self-
adjointness of the Pauli matrices. Note that bothB andM are
proportional to the identity matrix when they act on theF
-B components of the bispinorC, and for this reason they
commute with Pauli matrices. Next, we left-multiply Eq.
(24) by C†Bs3 and right-multiply Eq.(25) by Bs3C, to ob-
tain (s3

2=1, s2s3= is1)

iĊ†Bs3C = C†HB2 +
1

2
M +

1

2
Ms1JC,

− iC†Bs3Ċ = C†HB2 +
1

2
M +

1

2
Ms1JC.

We achieve the desired result by substracting the previous
equations:

isĊ†Bs3C + C†Bs3Ċd = 0 ⇔
d

dz
sC†Bs3Cd = 0. s26d

The conserved quantity is thusQ=C†Bs3C or, after re-
introducing indices,Q=on,jcnj

† bnjs3cnj (discrete frequency)
or Q=onedvcn

†svdbnsvds3cnsvd (continuous frequency). In
terms of the original forward and backward components of
the bispinor c, the conserved quantity has the following
form:

Q = o
n
E dvbnsvdfcFn

* sv,zdcFnsv,zd − cBn
* sv,zdcBnsv,zdg.

s27d
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The physical meaning of this conserved quantity can help
us to understand its particular form. Equation(27) is the
modal frequency version of the axial component of the Poyn-
ting vector, as one can check by recalling that, for the case of
Maxwell’s equations in the scalar approximation,Pz
,eR2if* ]zf. This represents the amount of electromagnetic
energy traversing a section of the system per unit time. For
this reason, since we are dealing in fact with the axial flux of
the electromagnetic field, it is natural that the quantityQ, the
total electromagnetic axial flux, can be considered as the sum
of the positive forward axial fluxs+QFd and the negative
backward axial flux s−QBd: Q=QF−QB, where QF

=onebncFn
* cFn andQB=onebncBn

* cBn.

VI. PARTICULAR CASES

An interesting case to consider is that occurring when one
neglects allF-B interactions. In general, the FBE’s(16) and
(17) mix the F-B components due to the presence of the
nonlinear functionFscd=FscF+cBd on the right-hand side of
both equations. WhenF-B interactions can be neglected—
i.e., when eithercF or cB are very small—FBE’s decouple
and we obtain two separate equations forcF andcB. In such
a case, forward and backward axial fluxes are conserved in-
dependently:dQF /dz=0 anddQB/dz=0. The demonstration
of this property closely follows the general proof previously
described for the total fluxQ. Let us consider FBE’s in their
discrete-frequency form[Eqs. (13) and (14)] when all F-B
mixing terms are neglected—that is, whenFscd<FscFd in
Eq. (13) becausec<cF scB<0d or Fscd<FscBd in Eq. (14)
becausec<cB scF<0d. We will consider forward compo-
nents only(backward analysis is completely analogous). By
relabeling the frequency and modal indices together into a
new index and by introducing the matrix notation in the
same way we used before to obtain Eq.(24), the equation for
forward components adopts the form

− iċF = SB +
1

2
B−1MscFdDcF. s28d

In this case, the equation for the backward component would
correspond to a very weak fieldscB<0d and, thus, it would
be basically linear: −iċB<−BcB. For our purposes, we also
need the adjoint equation of Eq.(28):

iċF
† = cF

†SB +
1

2
MscFdB−1D .

Left-multiplying Eq. (28) by cF
†B and right-multiplying the

previous equation byBcF, one gets

icF
†BċF = cF

†SB2 +
1

2
MscFdDcF,

− iċF
†BcF = cF

†SB2 +
1

2
MscFdDcF.

The desired conservation law comes now after substracting
the above equations:

d

dz
scF

†BcFd = cF
†BċF + ċF

†BcF = 0.

Certainly, QF=cF
†BcF=onebncFn

* cFn is the conserved for-
ward axial flux. Conservation ofQB=cB

†BcB=onebncBn
* cBn is

a trivial issue becausecB fulfills the linear equation −iċB<
−BcB. An analogous proof shows thatQF and QB are also
conserved when forward components are neglected instead.

An alternative analysis can be formulated in the light of
conserved phase symmetries whenF-B interactions are ne-
glected. Both forward and backward axial fluxes can be also
envisaged as the conserved charges associated to indepen-
dent global U(1) symmetry transformations onF andB com-
ponents, respectively. This is clear in Eq.(28), which is in-
variant under Us1dF global phase transformations

cF → eiuFcF, s29d

when MscFd=MseiuFcFd. This is the situation for all type of
nonlinearities that can be expanded in odd power series in
conservative lossless systems. Again, the simplest example is
a cubic or Kerr nonlinearity, for whichMscd=c* Tc. Since
the equation for backward components is basically linear
s−iċB<BcBd, global Us1dB invariancescB→eiuBcBd is trivi-
ally fulfilled as well. Us1dF ^ Us1dB invariance requires the
independent conservation of its associated Us1dF and Us1dB

charges, which are nothing but theF axial flux sQFd and the
B axial flux s−QBd—that is,dQF /dz=0 and −dQB/dz=0. If
the situation were the opposite and forward components
were neglected, a complete analogous analysis for backward
components would hold leading to the same conclusion.

WhenF-B interactions cannot be neglected, the previous
argument does not hold and neitherQF nor QB is conserved
separately in conservative lossless systems. From a symme-
try point of view, this can be understood by the fact that
FBE’s (16) and (17) are no longer invariant under indepen-
dent F-B phase transformationssc=cF+cB→ c̃=eiuFcF

+eiuBcBd because in that caseMsc̃d=MseiuFcF+eiuBcBd
ÞMscF+cBd=Mscd, as can be easily checked for a cubic
nonlinearity. Using the language of group theory, one would
state that Us1dF ^ Us1dB symmetry is broken. However, there
is a residual phase symmetry remaining in FBE’s(16) and
(17) when Us1dF ^ Us1dB invariance is broken byF-B inter-
actions. FBE’s are still invariant under simultaneous global
phase tranformations onF andB components(cF→eiucF and
cB→eiucB, which implies c→eiuc) provided thatMseiucd
=Mscd. Note that this U(1) symmetry is a particular case of
the higher-order Us1dF ^ Us1dB symmetry whenuF=u and
uB=u. Since Us1dF ^ Us1dB symmetry is broken, the Us1dF

charge—i.e., theF axial flux sQFd—and the Us1dB charge—
i.e., theB axial flux s−QBd—are not conserved. However, in
such a situation the remaining U(1) symmetry guarantees the
conservation of a new quantity—namely, thesum of the
Us1dF and Us1dB charges. That is,QF+s−QBd has to be con-
served. The total axial electromagnetic fluxQ=QF−QB ap-
pears then as the conserved charge of the U(1) symmetry
associated with the breaking pattern Us1dF ^ Us1dB

→Us1dF+B.
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There are two different and interesting physical situations
in which the analysis described above for systems in which
F-B interactions can be neglected is valid. The first one is
general forward pulse propagation, which naturally takes
place in the frequency domain or, equivalently, in the time
domain. The second one is monochromatic(or quasimono-
chromatic) nonparaxial forward evolution describing the
nonlinear propagation of spatial structures. It is remarkable
that despite the distinct nature of both phenomena, they are
just particular cases of FBE’s and, thus, equally described by
the same formalism. We will study them separately in the
next two subsections.

A. Forward pulse propagation

When one neglectsF-B interactions—for example, by
eliminating backward components—the most general form
of FBE’s is given by Eq.(28), which in continuum-frequency
notation reads

− i
]

]z
cF

nsv,zd = bnsvdcF
nsv,zd +

1

2bnsvd

3o
n8
E dv8Mnn8sv,v8;cFdcF

n8sv8,zd.

s30d

The nature of the nonlinearities defines the particular form of
the nonlinear modal matrix functionMnn8sv ,v8d. According
to what was explained in Sec. III, the functional form of the
nonlinear functionF and, thus, of theM matrix function can
be systematically constructed out of the mode amplitudes of
the linear propagation problem together with the standard
nonlinear coefficientssxs3d ,xs5d , . . .d. Thus, many formal
properties ofM will be inherited from linear modes. The
dependence ofM on modal indices and frequency will have
much to do with the particular dependence of the linear
mode amplitudes on spatial coordinates and frequency. Dif-
ferent physically well-grounded assumptions on the proper-
ties of M on modal(and polarization) indices and frequency
can be then made by analyzing linear mode characteristics.
The second element to take into account is the extension of
the frequency spectrumcFsvd. A considerable simplification
is achieved for sufficiently narrow spectra, whereas wide
bandwiths, such as those naturally appearing in highly non-
linear fibers(e.g., in supercontinuum generation), would de-
mand one considers the frequency dependence of Eq.(30) in
its total extent.

It is clear that, in the most general case, Eq.(30) involves
an intrincate dynamics since the nonlinear matrix function
Mnn8sv ,v8d leads to nonzero couplings between different
frequency, modal and even polarization components(recall
that polarization indices are included). Thus, even starting
from a simple spectral, single-mode, single-polarization con-
figuration, if the system had no physical mechanism to mini-
mize the great variety of couplings induced byM, spectral
evolution, as described by Eq.(30), would generate a more
and more complicated spectral function by exciting new fre-
quency, modal, and polarization components.

An important feature of Eq.(30) is the existence of an
inherent spatial modal interference of nonlinear origin, rep-
resented by the nondiagonal nature of the nonlinear matrix
function in the modal indices—Mnn8Þ0 snÞn8d—in the
most general case. In some special situations, however, this
modal interplay can be zero or it can be just neglected
(Mnn8=0 or Mnn8<0, when nÞn8). Exact cancellation of
matrix elements occurs by symmetry considerations in most
cases. A simple example would be given by a rotationally
invariant system. Its linear modes are solutions with well-
defined angular momentum and, consequently, the modal in-
dex of the spectral functioncF

n is thus labeled by the angular
momentum indexl. In such a case, angular momentum con-
servation requires that no mixing of spectral components
with different angular momentum occurs, thus eliminating
nondiagonal terms in the nonlinear matrix function corre-
sponding to different values of the angular momentum index
l; that is,M has to be diagonal in these indices:Mnn8,dll8.
In other cases, some nondiagonal matrix elements can be
negligible because of the different shapes of linear modes
amplitudes involved in the calculation of the overlapping
integrals appearing in the definition ofM (for example, for a
Kerr cubic nonlinearity,Mnn8,cm8

* cmeR2fm8
* fn8

* fmfn). In
some cases, these integrals can be very small for reasons that
do not rely on the presence of particular symmetries.

Whatever these reasons may be, in the case that modal
interplay does not exist or this can be neglected—that is,
whenMnn8=0 or Mnn8<0 if nÞn8—then Eq.(30) decouples
into independent equations for every mode index,

− i
]

]z
cF

nsv,zd = bnsvdcF
nsv,zd

+
1

2bnsvd E dv8Mnsv,v8;cFdcF
nsv8,zd,

s31d

which, in turns, leads to independent conservation laws for
the different modalF and B axial fluxes:dQF

snd /dz=0 and
dQB

snd /dz=0 (QF
snd;evbncF

snd*cF
snd andQB

snd;evbncB
snd*cB

snd).
In nonlinear propagation in optical single-mode fibers it is

commonly assumed that the spatial dependence of the elec-
tric propagating field is just given by the amplitude of the
fundamental mode of the fiber. In our context, this statement
is equivalent to say that the matrixM is one dimensional and
involves the fundamental mode only. The equation describ-
ing forward nonlinear propagation in such a fiber would be
Eq. (31) for n=0 (fundamental mode). Even if the fiber is not
single mode but involves modes widely separated by large
gaps inb’s, as in some highly nonlinear microestructured
fibers, the same equation can still remain approximately
valid. The reason is that in such a case intermodal interac-
tions are relatively suppressed with respect to modal self-
interactions because of the very different forms of linear
mode amplitudes, originated by both the discrete symmetry
of the fiber and their very different values ofb, leading to
zero or small overlapping integrals and, thus, to small values
of Mnn8 whennÞn8. The resulting approximated equation—
Eq. (31) restricted to the fundamental modesn=0d—is
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equivalent to the forward Maxwell equation for a highly non-
linear microstructured fiber used to adequately describe su-
percontinuum generation in this type of fibers[3].

B. Nonparaxial spatial evolution

Monochromatic (or, in practice, quasimonochromatic)
propagation is also a particular situation that can be de-
scribed using FBE’s. Equations(16) and (17) remain cer-
tainly valid when the frequency content of theF andB spec-
tral functionscF andcB is restricted to a single frequencyv0.
In such a case, only intermodal interactions or modal self-
interactions(including polarization) play a role since the
nonlinear matrix function has a trivial dependence on fre-
quencyMnn8sv ,v8 ;cd=Mnn8sv0;cd fixed by the propagation
frequencyv0. Mathematically, FBE’s become[in order to
symplify the notation,b0n;bnsv0d, Mnn8scd;Mnn8sv0;cd,
cszd;csz;v0d]

− i
]

]z
cF

nszd = b0ncF
nszd +

1

2b0n
o
n8

Mnn8scdcn8szd, s32d

− i
]

]z
cB

nszd = − b0ncB
nszd −

1

2b0n
o
n8

Mnn8scdcn8szd, s33d

andc=cF+cB.
Since the previous FBE’s involve spatial modal indices

only, it is interesting to write them also in the spatial domain,
so that spatial degrees of freedom appear explicitly. This
process is the inverse of the one we followed to obtain the
second-order modal equation in Sec. II; that is, we re-
introduce the spatial field amplitudes asfF,Bsx,y,zd
=oncF,B

n szdfnsx,yd, fn being the eigenfunctions of the linear
operatorL0;¹t

2+k0
2n0

2. b0n are the eigenvalues of theL0 op-
erator andn0;nv0

is the inhomogeneous refractive index,
both evaluated at the fixed frequencyv0=k0/c, respectively.
The outcome is

S− i
]

]z
− L0

1/2DfF =
1

2
L0

−1/2Msfdf, s34d

S− i
]

]z
+ L0

1/2DfB = −
1

2
L0

−1/2Msfdf, s35d

together withf=fF+fB. The nonlinear termMsfdf in-
cludes all types of nonlinearities in the spatial domain that
permit an expansion in power series. The usual example is
the Kerr nonlinearityMsfdf,sf* fdf.

It is also an interesting exercise to prove that one can
derive the standard second-order wave equation from the
first-order spatial FBE’s(34) and (35). If we sum and sub-
stract Eqs.(34) and (35), we obtain

− i
]

]z
sfF + fBd − L0

1/2sfF − fBd = 0 s36d

and

− i
]

]z
sfF − fBd − L0

1/2sfF + fBd = L0
−1/2Msfdf, s37d

respectively. By applyingsi] /]zd to Eq.(36), susbtituting Eq.
(37) into the resulting equation, and taking into account that
f=fF+fB, one gets the Helmholtz-type nonlinear wave
equation

S ]2

]z2 + ¹t
2 + k0

2n0
2 + MsfdDf = 0.

As mentioned in Sec. III and is also evident in Eq.(35),
the complete elimination of backward componentssfB→0d
implies the vanishing of nonlinearitiessM→0d. Conversely,
if M Þ0 then backward components are necessarily gener-
ated:fBÞ0 (even if they did not initially exist). Therefore,
there exists a close link between backward amplitudes and
the nonlinear functionM. Certainly, in most experimental
situations in which an axially invariant system is axially il-
luminated along a privileged(say, forward) direction exclu-
sively, backward components are small as compared to for-
ward amplitudes. However, as backward FBE’s show, they
cannot be identically zero in the presence of nonlinearities.
They are exactly zero only in the case the system behaves
linearly. In such a case, since the system is axially invariant
and is illuminated in the forward direction only, there would
be no axial inhomogeneities that could produce linear reflec-
tions. Thus, small backward amplitudes are expected to be
generated by small nonlinearities so thatfB→0 when M
→0 (linear case). Our interest lies now in the quantification
of the relation betweenfB and M in the small backward
amplitud regimesfB=dfB!1d.

In order to clarify the calculation, we parametrize the
“size” of the nonlinearity by redefining the nonlinear func-

tion asM =gM̄, whereg is a dimensionless real parameter. In
this way, we can approach the linear casesM→0d by taking
the limit g→0. It is easy to realize thatg has to be propor-
tional to the input powerg, P wheng is small. Certainly,M
is a function of the input power verifying thatM→0 asP
→0. Assuming, as usual, that this dependence is analytical
this implies thatM , P whenP→0. The same argument for
g leads toM ,g for small values ofg. Therefore, the small-
g and small-P regimes are, in fact, the same. From a physical
point of view, this provides a physical meaning to the dimen-
sionless parameterg in the small nonlinearity regime:g
, P. Note that, in the general case of a nonlinearity that can
be expanded in power series inf, the auxiliar nonlinear

function M̄ can depend itself ong. However, for our pur-

poses, it is enough to consider thatM =Osgd [and thusM̄
=Os1d] because we are going to be interested in leading-
order terms.

Following the reasoning above, we consider the total field
amplitude as the sum of a large forward amplitude and a
small backward amplitude:f=fF+dfB. Besides, the small
backward amplitude is a function of the nonlinear parameter
g—dfB=dfBsgd—and it has to verify thatdfBs0d=0, since
we are assuming that no backward radiation is present in the
absence of nonlinearities. The nonlinear function can be then
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expanded as MsfF+dfBd=MsfFd+s]M /]fufF
ddfB

+OsdfBd2. Substituing the total amplitudef=fF+dfB and
the expansion ofM in Eq. (35) and keeping the leading-order
terms indfB only, one gets

F− i
]

]z
+ L0

1/2 +
1

2
L0

−1/2SMsfFd + fF
]M

]fF
DGdfB

= −
1

2
L0

−1/2MsfFdfF + OsdfBd2.

SinceM =Osgd, we can find the leading-order term ing for
dfB from the previous equation:

dfB = −
1

2
S− i

]

]z
+ L0

1/2D−1

L0
−1/2MsfFdfF + Osgd2,

so thatdfB is alsoOsgd. We can proceed analogously with
the forward FBE(34) to find

S− i
]

]z
− L0

1/2DfF =
1

2
L0

−1/2MsfFdfF +
1

2
L0

−1/2

3SMsfFd + fF
]M

]fF
DdfB + OsdfBd2,

which, after introducingg dependences[M =Osgd, dfB

=Osgd], becomes

S− i
]

]z
− L0

1/2DfF =
1

2
L0

−1/2MsfFdfF + Osgd2. s38d

Therefore, neglecting backward components is equivalent
to consider FBE’s up toOsgd2 terms. Or, equivalently, the
pure forward equation(that is, FBE’s withf<fF and fB
<0) is just a weak-nonlinearity approximation. More spe-
cificaly, it is the leading-order contribution in the nonlinear
parameterg to FBE’s. For this reason, it is possible to find
equivalent forms to the forward equation different than Eq.
(38). An interesting alternative version of the forward equa-
tion is easily obtained by using the property

L0
1/2fF +

1

2
L0

−1/2MsfFdfF + Osgd2

= L0
1/2S1 +

1

2
L0

−1MsfFdDfF + Osgd2

= fL0 + MsfFdg1/2fF + Osgd2,

which allows us to write Eq.(38) as

− i
]

]z
fF = fL0 + MsfFdg1/2fF + Osgd2. s39d

The previous version of the forward equation has been
used to simulate monochromatic nonlinear propagation of
spatial structures in photonic crystal fibers[12] in the non-
paraxial regime. Despite the pure forward equation being
first order inz, it has an intrinsic nonparaxial nature. Unlike
in the nonlinear Schrödinger equation, the standard integral
efF

* fF is not a conserved quantity. This can be clearly seen
if one writes the evolution operator associated with Eq.(39)
for an infinitesimal axial stepe:

fFsz+ ed = expiefL0 + M„fFszd…g1/2fFszd.

This evolution operator is not unitary because the operator
L0+M(fFszd), despite it being self-adjoint, it is not positive
definite, inasmuch as it can have negative eigenvalues corre-
sponding to evanescent wavessb2,0d. The loss of unitarity
is due to this evanescent modes leading to the nonconserva-
tion of the integralefF

* fF.

VII. CONCLUSIONS

The experimental availability of high nonlinearities is ex-
pected to unveil a number of new effects that will force us to
extract information from Maxwell’s equations in a more ac-
curate manner. In this paper we shed some light on the prob-
lem of revealing the close interplay between backward com-
ponents and nonlinearities in axially invariant systems. With
a minimum amount of approximations, we have been able to
find a system of two coupled first-order equations for the
forward and backward spectral components of the electro-
magnetic field, the so-called forward-backward equations.
The explicit appearence of forward and backward compo-
nents as well as of their nonlinear couplings in these equa-
tions is useful to quantify under which conditions nonlin-
early generated backward components can be relevant in a
new scenario of highly nonlinear effects.

From the formal point of view, the FBE’s are especially
appealing in the sense that they admit a simple bispinor rep-
resentation that closely resembles that of a Dirac equation for
the positive and negative components of a fermion wave
function in 1+1 dimensions. Similarly to the Dirac equation,
the use of the algebraic properties of the spinor FBE’s allows
us to obtain the conserved quantities associated with them in
an elegant way. In the same manner, all conserved quantities
also admit an interpretation as conserved charges associated
with phase symmetries.

The dimensional reduction is a remarkable issue of the
modal approach followed here. The original 3+1 dimensions
(3 spatial, 1 frequency) of the starting wave equation for
Evsx,y,zd [Eq. (1)] are reduced to 1+1(1 spatial, 1 fre-
quency) in the FBE’s. The modal approach is a way of “in-
tegrating out” the transverse spatial degrees of freedom(x
andy). Of course, the coupling between tranverse degrees of
freedom in Eq.(1) does not dissapear in FBE’s. It transforms
into the couplings between the different modal components
of the spectral functioncn which are mathematically encoded
in the nonlinear matrix functionMnn8. For the case in which
only a few modal components are relevant, the process of
dimensional reduction provides a dramatical simplification.
Typical envelope equations for propagating pulses are the
result of a similar process in which the propagation of only
one linear mode(usually, the fundamental mode) is assumed.
The FBE’s, however, provide a natural way of dealing with a
more complex modal structure and, moreover, they allow
one to directly work with the frequency content of the propa-
gating field—that is, with its spectral componentscnsv ,zd. In
this sense, there is no need to resort to the concept of pulse
envelope(unless one wants to make contact to other ap-
proaches). For the same reason, the FBE’s are equally suit-
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able to describe pulse propagation with extremely large
bandwiths since no assumption on the form ofcnsv ,zd is
required. Ideally, they could handle any type of temporal-
spectral behavior provided the only assumption needed, the
“scalar approximation”(in its strong or weak form—see Sec.
II ), is reasonably fulfilled.

Another scenario in which these equations can be useful
is that in which there are relevant spatio-temporal effects.
The FBE’s inherently include couplings between frequency
and modal indices through the nonlinear matrix function
Mnn8sv ,v8 ;cd. Since modal indices correspond to spatial
amplitudes of linear modes, the nonlinear matrix function
Mnn8sv ,v8 ;cd is constructed out of these amplitudes as an
overlapping integral(Sec. II). Thus, part of the frequency
dependence ofMnn8 is due to the explicit dependence of
linear mode amplitudes on frequency. In the ultrawide spec-
trum regime, this dependence cannot be neglected and, there-
fore, the contribution of several spatial modes can produce
simultaneous couplings between modal indices and frequen-
cies which can be naturally treated in the framework of the
FBE’s. In terms of the original 3+1 Maxwell’s equations,

these effects would correspond to spatio-temporal phenom-
ena, in which the spatial and temporal degrees of freedom of
the electric fieldEsx,y,x,td could not be factorized.

Sumarizing, the FBE’s provide a general framework to
deal with nonlinearities in axially invariant inhomogenous
dielectric media, limited only to a reasonable validity of the
“scalar approximation”(in its strong or weak form). As we
have seen in Sec. VI, its generality can be made evident after
analizing two apparently disconnected cases: forward pulse
propagation(a purely temporal phenomenon) and monochro-
matic nonparaxial evolution of spatial structures(a purely
spatial phenomenon). Both are equally and naturally de-
scribed within the FBE formalism. The fast progress in non-
linear optics experiments provides effects of increasing com-
plexity both in the spatial and time domains as well as in the
interplay between forward and backward components.
Strong correlations between spatial and time domains and
forward and backward components will play a more and
more important role. In this context, the FBE’s can be a
suitable and convenient tool to encompass a variety of dif-
ferent phenomena within a common framework.
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