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We present a general framework to deal with forward and backward components of the electromagnetic field
in axially invariant nonlinear optical systems, which include those having any type of linear or nonlinear
transverse inhomogeneities. With a minimum amount of approximations, we obtain a system of two first-order
equations for forward and backward components, explicitly showing the nonlinear couplings among them. The
modal approach used allows for an effective reduction of the dimensionality of the original problem from 3
+1 (three spatial dimensions plus one time dimengimnl+1 (one spatial dimension plus one frequency
dimension. The new equations can be written in a spinor Dirac-like form, out of which conserved quantities
can be calculated in an elegant manner. Finally, these equations inherently incorporate spatiotemporal cou-
plings, so that they can be easily particularized to deal with purely temporal or purely spatial effects. Nonlinear
forward pulse propagation and nonparaxial evolution of spatial structures are analyzed as examples.
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I. INTRODUCTION FME). On the other hand, two common features of all of
Nonlinear propagation of light pulses in dielectric mediatheém are the neglect of the backward components of the
such as optical fibers has been traditionally modeled usin§€ctromagnetic field and their first-order character. .
the nonlinear Schrédinger equati@iLSE) [1]. However, it The role played by backward components has been previ-
is well known that the NLSE needs modifications to describe?USly analyzed for an homogeneous medii@h In this pa-

a number of higher-order nonlinear effects which becomd®€" W€ explicitly unveil their role but in the more general

. . . case of an axially invariant inhomogenous nonlinear medium
important at increasing powers and for short pulses. Re; Y )

cently, access to new optical systems in which nonlinearitie%ﬂ)y explicitly finding the coupled first-order equations that

. . . ive the forward an kwar mponents of the electro-
can be considerably enhanced together with the expenmentﬂ{ e the forward and backward components of the electro

L " “fMagnetic field in an axially invariant nonlinear system. We
availability of ultrashort pulses has pushed the descriptiony;"show that these first-order forward-backward equations

based on the NLSE and its modified versions to a limit. A(rgg's) are equivalent to the original second-order equations
typical example of this scenario is provided by the phenomygy the electric components of the electromagnetic field. The
enon of supercontinuum generation in photonic crystal fibergg's will provide us with a common framework that can
[2], which requires a specific modeling that goes beyontencompass different nonlinear phenomena. In fact, since
approaches based on conventional versions of the NLSEese equations explicitly manifest the couplings between
[3,4]. These approaches are expressed in evolution equatiogpatial and time-frequency degrees of freedom typical of
that differ from the NLSE in the amount of approximations spatio-temporal phenomena, they can be easily applied to
needed to achieve them. We can mention the so-called gedescribe either purely temporal or purely spatial effects
eralized NLSHE5,6], the nonlinear envelope equatidNEE)  within the same framework, revealing the total generality of
[7], the forward Maxwell equatiodFME) [4], and the uni-  this formalism.

directional pulse propagation equati@dPPB [8]. Briefly, The paper is organized as follows. In Sec. Il we derive the
the aim of these equations is to describe pulse propagation imost general modal second-order equation for nonlinear
the regime where the frequency width of the pulse is compropagation in an axially invariant inhomogenous medium
parable to the carrier frequency, which, in turn, translatesand we explain the nature of the only approximation needed
into the fact that the usual approaches such as the slowlp obtain it. In Sec. Il we demonstrate the equivalence be-
varying approximation no longer hold. The specific form of tween the modal second-order equation and the first-order
these equations is, on the one hand, the result of applyingBE’s. In Sec. IV we introduce a spinor representation to
some other different approximations—e.g., assuming propasbtain a Dirac-like form of the FBE’s. In Sec. V we derive
gation in an homogeneous mediuNEE and UPPE or  the conserved quantities associated with the FBE's and ana-
single-mode propagation in fibexgeneralized NLSE and lyze them in the light of phase symmetries. Finally, in Sec.
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VI we examine two different nonlinear phenomena occurring 5 2 NL

in axially invariant inhomogeneous dielectric media in the 2TV +kgn,(xy) |E, == G, (E), 3
light of the FBE's: forward pulse propagation and non-

paraxial evolution of spatial structures. where nowV, stands for the transverse gradient operator

and the axial second-order derivative has been made explicit.
Let us now perform a modal expansion of the electric field
in terms of the eigenmodes of the lineaiindependent

The most general equation for the propagation of the elecsystem, described by the linear transverse operapr
tric components of an electromagnetic field in a inhomoge= V{+kgn;(x,y). These modes fulfill the linear eigenvalue
neous, isotropic, and spatially local dielectric medium isequation

given by Lo®2(x,y) = BA(w)PL(X,Y). (4)

VZE,- V(V-E,) +Kn’E,=-GL(E), (1) Sincel, does not mix the spatidpolarizatior) components
) of the electric field, it is proportional to the identity operator

where E,,=E,(x,y,2) is the complexw frequency com- in polarization space. For this reason, its eigenmodes have a
ponent of the real electric fieldE(x,y,z,t)=/,E.(X,¥,2  three fold degeneracy in polarization indices. Therefore, ev-
Xexp(-iwt), V is the three-dimensional spatial gradient op-ery multiplet of eigenmodes is constituted by three linearly
erator,ky=w/c is the vacuum wave number,=n,(X,y,2) is  independent modes, each one proportional to a three-
the frequency-dependent refractive index profile of the di-dimensional vector belonging to a basisit For simplicity,
electric medium, an@!" is the function that represents the we can consider this basis to be the canonical one
local nonlinear response of the medium to the propagatingl)ﬁ(g)(x,y):(I)‘,;’(x,y)u(g) (6=1,2,3 where the components
field. In the most general case, the relative dielectric constarif the canonical basifu), U, U} Satisfy U .= d,, (@
(e,=n?) and the nonlinear functio®"" can be either spa- o 9 o o
Co™ o . =1,2,3. If the system is lossless, tham,=n, and L, is
tially local (the case we are consideringr nonlocal if there self-adjoint; if it is not, we consider the real partrof in Eq.
exist some type of spatia}lly delayed response _effects. Bgsid?g) S0 thatl_,o is again,self-adjoint. In this way, the set Iof
the general wave equatiafl), Maxwell's equations require eigenmodeg®;, ,} forms an orthogonal basis of functions

the constraintV-D,=0 to be satisfied where the displace- fthe t dinates that b dt dth
ment fieldD,, is itself a function of the propagating electric ot the transverse coordinates that can be used to expand the
electric fieldE (x,y,2) at a givenz

field E,. We assume a spatially local response—thabigs,
=¢,(E,)E,. In the case the system presents some type of E,(XY,2) => Cro@; 2P Y)U o)
anisotropy,€,(E,) is a second-order tensor. Here we con- no

sider an isotropic medium, so tha}(E,) will be a scalar .

function, although the generalization to an anisotropic me2" N components,
](cjium is straightforward. The constraint relation has thus the E“(X,Y,2) = > Cro(W;2)DE(X,Y). (5)
orm n

Il. MODAL SECOND-ORDER EQUATION

V -[e,(E,)E,]=0. 2) Of course, the modal expansiQﬁ) has to be un_derstood
as a generalized form of expansion over the entire spectrum

In most cases in nonlinear optics, the general constfajis ~ Of the Lo operator, in which both discrete and continuum
replaced by the approximated, and much simpler, “scalarParts of the spectrum can coexist. In practice, however, when
condition V-[e,(E,)E,]~ €,(E,)V -E,=0, implying that dealing with numerical applications, the continuum part is
V.E,~0. This approximation is known to work well in a dlscretlze_c_i by means of some convenient election of bou_nd—
panoply of nonlinear effects with few and remarkable excep&'y conditions, so that the discretized form of the expansion

tions, related mainly to extreme self-focussing evégjsin (9 iS, in fact, the one that is used. Since the election of
order to simplify our approach, this approximation will be Poundary conditions is an artifact of the simulation, one has

assumed throughout, although our main results will remairf® Mmake sure that physical results are independent of them.
valid in a slightlier general context in which the conditon ~ NOw, we substitute the modal expansid into Eq. (3),
V-E,~0 will not be strictly necessary. we multlzply this equation bybﬁ? , taking into account that-
Our interest lies in describing propagation in an axially Lo®y =8Py, and after integrating the result over the entire
invariant system—that is, a system in which both the refraciransverse spadeonsidering, without loss of generality, that
tive index profile n,(x,y,2)=n,(x,y) as well as all other the functions®y are orthonormalfzodry ®'=dyr), We ob-
macroscopic nonlinear structural functions, such as nonlined®in the evolution equation for the modal expansion coeffi-
susceptibilities, are independent. In other words, we will Clentsc:
focus on systems for which the axmbependence is carried P 5
by the propagating fieldE(x,y,z) exclusively. Mathemati- (a_zz +ﬁn(w)>cna(w:2) =-Fp,(C). (6)
cally, this property is reflected in the fact that there is no
explicit dependence om in the nolinear functionGN-. In The equation above represents an effective lower-
these systems, the wave equatitk) and the constraint dimensional equatiofil +1 dimensions, instead of the 3+1
V-E,=0 merge into a single equation: dimensions of the original equatiaB)] for the coefficients
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Cho(w;2). Physically, they represent the frequency, modalpletely general second-order equati@) into a first-order
and polarization spectral content of the propagating electriformalism in which forward and backward components ex-
field. The nonlinear functiof? (c) is given by plicitly appear.

{0}

. L ¥ Ill. DERIVATION OF FORWARD-BACKWARD
Fio(C) = qu)n GML(S co®p). () EQUATIONS

A convenient way of considering the effective equation
gﬁ) is as a limit of a equation for a frequency-discretized
spectral functionc),(z) =c,,(w;j;2). This is a typical situa-
tion in numerical simulations in which the frequency appears
discretized in a Fourier series and one approaches the
continuum-frequency limit numerically or likewise in some
experimental cases where one physically works with fre-
quency combs instead of continuum sources. In such situa-

This function is an input of the effective equati(®) because
it is known once the linear amplitudes are determined out o
the linear eigenvalue problem in E@). The same applies to
the propagation constanf8,(w), which also appear as an
input.

As an example of the nonlinear functiohy (c), it
is instructive to consider the case of a Kerr nonlinearity,

for which GN-=w?/c?f )((3), 0,0y, 03, 0+ 0~ w3)

. wo w0 grl o' 7 tions, the frequency discretized version of EG) is
XESZ EEL 273, From the definition of the nonlinear @
function (7), one finds thaf has the form (E + ﬂﬁj)cﬁw(z) =-F (c). (8)
Fr(©= 2 X

The general second-order equati®), displaying all fre-
quency, modal, and polarization indices, will be our starting
point. The functionF(c) includes all nonlinear contributions

m'n'm7 o' 7

@ —nm'n’m
Xf Cro /T (0, 0y, 03,0+ Wy
wow3

ool in the frequency domain constructed out of Maxwell’s equa-
tions according to the procedure described in the previous
_ ag wtwy—w3 . H H H )
w3)C.7  Crny . section. As seen above for a Kerr nonlinearity in Maxwell’s

) ) ) ) equation, this function provides a cubic behavior in the spec-
Thus, for a Kerr nonlinearity, all the information about the 4| functionc, which in the discretized frequency version is
nonlinear properties of the system is encoded in the tensor

function T. As a first approximation, one could say that this . ko (AR
tensor function depends on frequency both through the sus- Fho(C) = 22X Croy 7| Tnm'n’m € Cmr

ceptibility x'® and through the overlapping integral of linear m'n'm 7o’ 7K'}’

O'T’O"T

mode amplitudes: (9

TN (), o, g, ® + Wy — wg) where T is a tensor in frequency, modal, and polarization

or'o'T indices that can be explicitly calculated out of the amplitudes

272 (3 of the linear fiber modes. However, in order to obtain the

= w/cx,  (0,0y,w3,0+ w0~ o x ' .

Xyt {01 02,03 2~ w3 first-order counterpart of the general second-order equation

W 1 0 3 oo (8), it is not necessary to specify a particular form for the

X ]qu)n S Nee s nonlinearity functionF. It is interesting to stress again that

both the modal dispersion relatio@s(w) (or its discretized-

Besides, the dependence on modal indices offthensor is  frequency versiorB,;) andF are inputs that are known once
a result of the overlapping of spatial amplitudes, whereaghe mode linear problem is solved. In order to simplify the
polarization indices are provided by the third-order susceptinotation, we will incorporate the polarization index into the
bility. modal one when dealing with the spectral functmand the

We do not want to get into much detail on the particularnonlinear functionF. This is possible because polarization
form of the nonlinear function since, for our purposes, it isand modal indices always come together in pairs, so that,
not necessary to provide an explicit form fBrin Eq. (6).  from now on and without loss of generalityrepresents the
Only general properties dF will be used and the latter can index pair(n,o).
be inferred from the construction previously described. We perform now an axial Fourier transform on the spec-
Along the same line of reasoning, it should be added that th&al functionsc in Eq. (8), defined as
effective equatior{6) remains valid in some cases when the
“scalar” approximationV -E_~0 no longer holds. Less re- c (z):i f dgal(B)ek
strictive approximations can be made in whiéhD,,~ 0 but " 2w "
V-E,#0 and, nevertheless, the effective equat{éi re-
tains, formally, its validity. It would differ in the fact that the
values of 3 would be now calculated including the missing . . ,
vector term in the linear eigenvalue equatidhand that the ThB) = f dzg(2)e™.
nonlinear functionF would include also terms of vectorial
origin. Again, the analysis of such topics is out of the scope With this definition, 83— -id/dz (or, d/dz—iRB), and,
of this paper, for our aim is to transform the almost com-thus, the axial Fourier transfom of E) is given by

or, inversely,
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_ 324 g2y@l —_Fi 10 Equationg13) and(14) are the exact first-order equations
=B+ By)en(B) n© (10 equivalent to the general second-order equat®n

where F(©) is the axial Fourier transform of the nonlinear ~ Restoring the continuum frequency notatigh— c(w)],
term in Eq.(8): EE]—“B[F] Dividing this equation by 82 W€ obtain the first-order forward-backward equations in the

+ 35 (we assume some kind ofé” prescription to deal with continuum-frequency limit
the poles of the inverse of this function in tigeplane, we

obtain 9 n __ 1
| B ( [ ,Bn(w)>cp(w,z) = 28 (@) Fo(c(w,2)), (16)
B = oz PO (11) a 1
The function preceding the nonlinear factor in the above (— i—+ Bn(w))cg(w,z) =-—F,(c(w,2), (17)
0z Zﬂn(w)

equation is the axial Green function ghspace and has single
poles at 8,; and By, corresponding to forward and back- )
ward propagation, respectively, for the positive-frequencyvhereas the total spectrum is
part of the spectral functiot (peaked at a positive frequency
+wy). Clearly, we can decompose the Green function in the
contributions corresponding to the two poles by means of the
following identity:

c(w,2) = ce(w,2) + cg(w,2).

Note that if the backward spectrum is sufficiently small
and it can be approximately neglectégg=0), thenc~=cg
1 1 ( 1 1 ) (12) and only Eq(13) or (16) matters. It is also interesting to note
2_ 32y \g-p. B+8.)" that small values of the backward spectrum imply small non-
(B~ Bn) 2B\ B~ Poi B P linearities, as can be checked by going to ¢ge~0 limit in
which allows us to write Eq(11) as Eq. (14) or (17). In such a limit, nonlinearities dissapear
independently of the nature of their origif{c) — 0. We will

C=Cr+Ce, return to this point in the last section of this paper.
where
. 1 1 ~. IV. SPINOR REPRESENTATION OF THE
Cen= 25 B-B Fh©, FORWARD-BACKWARD EQUATIONS
nj nj
It is possible to put the first-order FBE’s in a more com-
@)l = - 1 1 Ei ® pact form by using a spinor representation for the forward
Ce)n= 2B B+ Bnj " ¢ and backward spectral functiorgg, andcg. We start noticing
_ that the FBE's(with discrete-frequency indicggan be re-
or, equivalently, written as
A
(B_an)(EF)J = F](é) ) d . i 1ot T I
B S~ By o = 3 TN 00T+ N0 ]
n!j!
. 1~
(B+ Bn) (o) =~ 28 Fr©).
nj

d ni i’ it i’ rir
—ji= eni = _Ni n'j’ _ il n'j
Now, we take the inverse axial Fourier transform of the ( 'dz+ﬁ“l)CB ,2,[ N (0CF " = Noy (C)cg " ].
above equations, taking into account the previous definitions, !

so that, considering that B—-id/dz  F,'Crp) (18)

=F,M(Fp(Ce ) =Ce g, and El(E):El(fﬁ(F))IF, we can We have assumed that the nonlinear functiorcan be
write the following two first-order equations for forwa(H) expressed as the action of a field-dependent opekétor on
and backwardB) components:

the spectral functiom—that is,FL(c) EEn,j,MLjr:,(c)cLl,. This
d , 1 . is the situation that applies to all type of nonlinearities that
(— ld—z—,Bm')(CF)L: 25 Frlc), (13)  can be expanded in a power series. The simplest case is the
" aforementioned Kerr cubic nonlinearity, for whicMJan,(c)
_.d i1 =sK ORI IS0 Moreover, in conservative
'<jz+B”j (Cg)n = 2anF”(C)’ (14 systems—that is, those for which the Hamiltonian is con-

o served and real—th®l operator is forced to be self-adjoint.
where the total spectrum is given by the sum of forward andrpe N operator appearing in Eq(18) is nothing but
backward contributions, il i’

Nnn,(C) = 1/(2an)Mnn/(C)-
C=Cg+Cg. (15 The equations above can also be written in a matrix form
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) N [
’B”jo -1/\cYy

nj

- i_<CF
nj

dz\cg

oo (11
— i F
) Nnn,(c>(_ L 1>(Cn,j, ) (19
n'j B
Then, introducing the bispinap, defined as
. cl
uﬂnz( E,-), (20)
Cg

and the Pauli matrices

ok (05

noticing that

g1 —

)’ U3:((l) —01)’

1 .
-1 -1 =o3tloy,

we see that Eq19) can be written in a bispinor form nota-
tion (a sum over repeated indices is assumed

. d i i . i o
- Id_an = [(ﬁn’j’5nn’ 5jj’ + N]n]nr)o'?, + 'NJanro'Z]’ﬂnr- (21)

Certainly, N is a nontrivial operator in frequency and

mode spaces. However, it is proportional to the identity op-

erator when acting on the-B internal degrees of freedom of
the bispinory. If we use continuum-frequency notation, Eq.
(21) can be written as

- iaizlﬁn(w,Z) = Bh(w)o3th(w,2) + 2 f doo' Ny (@, 00" 1)

X(o3+i09) (0w ,2). (22

PHYSICAL REVIEW E 71, 016601(2005

persion relation functiors is real for all modes. We consider
as a starting point the discrete-frequency FBE’s in their
spinor representatio21). Now we proceed to redefine the
labeling of this equation following the same procedure we
used to incorporate polarization indices into modal indices in
Sec. Ill. Since frequencyj) and modal indicegn) are al-
ways paired together in E¢21), we can incorporate both in

a new single index¢n,j)—p, (n’,j’)—p’. In this way, Eq.
(21) becomega sum over repeated indices is assumed, as
before

. d :
_|d_zlﬂp:[(l[))p/5pp/ +Nppr)0'3+|Npp/0'2]¢'pr. (23)

This form of the equation enables us to introduce the matrix
operators¥, B, and N, whose elements are given b,

By Sppr» @NA Ny, respectively. Therefore, we can writd
=d¥/d2

i 1. -
-iv= B+§B M 03+IEB Mo, (P, (24

where we have made use of the relation betweer\ttaad
M operators:Np, =1/(2B8,)Mpy 0 N=(1/2)B™M. We will
also need the adjoint of the above equation:

Pt =t 1 et S
v —W{(B+EMB )0’3_|EMB 0'2}, (25)
where we have used the properties tBatB' (sinceB is
diagonal andB is rea) and M=M", together with the self-
adjointness of the Pauli matrices. Note that bBthndM are
proportional to the identity matrix when they act on the
-B components of the bispino¥, and for this reason they
commute with Pauli matrices. Next, we left-multiply Eg.
(24) by ¥'Bo and right-multiply Eq.(25) by BoyW, to ob-
tain (o‘%:l, 0o03=107)

Despite its different appearence, the first-order spinor equa-
tion for the pulse spectrum contains exactly the same infor-
mation on dynamics than the original second-order equation
(8). The spinor representation of the FBE’s has common fea-
tures with the Dirac equation for a particle in 1+1 dimen-
sions. In 1+1 dimensions, the original algebra of 18 4

ot ) O T
iv'Boy¥ =¥\ B +§M+5M0'1 v,

matrices(Dirac matrice$ of the four-dimensional4D) Dirac
equation is reduced to 4>22 matrices constituted by the
identity and Pauli matrices. The FBE spin@0), formed by

TR =t B2+ 1 1
-iv Bo'g‘l’—‘lf B +§M+EMO'1 v,

We achieve the desired result by substracting the previous
equations:

the forward and backward spectral functions, plays the role
of the Dirac spinor, constituted by the positive and negative-
energy components of the particle wave function. First-order
spinor equations involving forward-backward components

. . d
i(PBog¥ + ¥'Bo¥) =0 = d—z(foTBagfo) =0. (26

have been also found in the description of different optical,

systems such as laser cavit{d9,11].

V. CONSERVED QUANTITIES

The conserved quantity is th@=Y'Boy¥ or, after re-
introducing indicesQ=X,,;y Bnjosi; (discrete frequengy
orQ=2,[dw :ﬂ(w),Bn(w)ag,z/fn(w) (continuous frequengyin
terms of the original forward and backward components of
the bispinor ¢, the conserved quantity has the following
form:

The goal of this section is to find the conserved quantity

associated to FBE'’s in the most general case. Our only as-
sumption will be the conservative and lossless character ofQ =
the system, which mathematically will be reflected in the fact

that theM operator is self-adjointM =MT) and that the dis-

> f dwBn(@)[Crn(®,2)Cen(®,2) = Cao®,2)Can(®,2)].

(27)
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The physical meaning of this conserved quantity can help d . b et
us to understand its particular form. Equati(@¥) is the d_Z(CFBCF) =CpBce+ceBe-= 0.
modal frequency version of the axial component of the Poyn-
ting vector, as one can check by recalling that, for the case Qﬁertainly, QF:CEBCF:En f lgnc’;nan is the conserved for-
Maxwell's “equations in the scalar approximatio®,  ward axial flux. Conservation @s=cLBcg=3,/ BnCa,Can IS
~ [xéi¢* d,¢p. This represents the amount of electromagneticy trivial issue because; fulfills the linear equation i€g~
energy traversing a section of the system per unit time. ForBc,. An analogous proof shows th@: and Qg are also
this reason, since we are dealing in fact with the axial flux Ofconserved when forward Components are neg|ected instead.
the electromagnetic field, it is natural that the quar@ythe An alternative analysis can be formulated in the light of
total electromagnetic axial flux, can be considered as the sugpnserved phase symmetries wHesB interactions are ne-
of the positive forward axial flu(+Q) and the negative glected. Both forward and backward axial fluxes can be also
backward axial flux (-Qg): Q=Qf-Qg, where Qr  envisaged as the conserved charges associated to indepen-

=3 J BrCenCrn aNd Qe=, f BrCa Can dent global Y1) symmetry transformations df andB com-
ponents, respectively. This is clear in E&8), which is in-

V1. PARTICULAR CASES variant under W1)g global phase transformations
An interesting case to consider is that occurring when one cg — € %c, (29

neglects allF-B interactions. In general, the FBE'$6) and

(17) mix the F-B components due to the presence of thewhenM(cg)=M(€%cy). This is the situation for all type of
nonlinear functior(c) =F(cg+cg) on the right-hand side of nonlinearities that can be expanded in odd power series in
both equations. WheR-B interactions can be neglected— conservative lossless systems. Again, the simplest example is
i.e., when eitherc: or cg are very small—FBE’s decouple a cubic or Kerr nonlinearity, for whictM(c)=c* Tc. Since

and we obtain two separate equationsdprandcg. In such  the equation for backward components is basically linear
a case, forward and backward axial fluxes are conserved irf—icg=Bcg), global U1)g invariance(cg— € %cg) is trivi-
dependentlydQ:/dz=0 anddQg/dz=0. The demonstration ally fulfilled as well. U1)r® U(1)g invariance requires the

of this property closely follows the general proof previously independent conservation of its associatéd)b)and U1)g
described for the total fluQ. Let us consider FBE's in their  charges, which are nothing but theaxial flux (Qg) and the
di_sc_rete—frequency forniEgs. (13) and (14] when all F—_B B axial flux (-Qg)—that is,dQc/dz=0 and €Qg/dz=0. If
mixing terms are neglected—that is, whefc)~F(ce) i the sjtuation were the opposite and forward components
Ed. (13) because~cr (cg=0) or F(c)=~F(cg) in EQ.(14)  ere neglected, a complete analogous analysis for backward
becausec~cg (cr=~0). We will consider forward compo- components would hold leading to the same conclusion.
nents only(backward analysis is completely analogpuy When F-B interactions cannot be neglected, the previous
relabeling the frequency and modal indices together into @rgument does not hold and neithi@g nor Qg is conserved
new index and by introducing the matrix notation in the separately in conservative lossless systems. From a symme-
same way we used before to obtain E2f), the equation for  try point of view, this can be understood by the fact that

forward components adopts the form FBE's (16) and(17) are no longer invariant under indepen-
1 dent F-B phase transformations(c:cp+c_B—>T::e'9FcF
—i¢F:<B+—B_1M(CF))CF- (28)  +€%cg) because in that caseV(€)=M(e %ce+e%cg)

2 # M(ce+cg)=M(c), as can be easily checked for a cubic

aonlinearity. Using the language of group theory, one would
state that W1)r® U(1)g symmetry is broken. However, there
is a residual phase symmetry remaining in FBE$) and
(17) when U1)r® U(1)g invariance is broken b¥-B inter-
actions. FBE's are still invariant under simultaneous global
Lt s 1 i phase tranformations dhandB _(:omponentsscp—>ei fce and
ICF =CF B+§M(CF)B : cg— €, which implies c—€'’c) provided thatM(€'’c)
=M(c). Note that this J1) symmetry is a particular case of
Left-multiplying Eq. (28) by CEB and right-multiplying the the higher-order (1)r® U(1)g symmetry whenf-=6 and

In this case, the equation for the backward component woul
correspond to a very weak fieldg=0) and, thus, it would
be basically linear: i€g~-Bcg. For our purposes, we also
need the adjoint equation of E(®8):

previous equation bcg, one gets Og=0. Since Ul)r® U(1)g symmetry is broken, the Q)¢
charge—i.e., thé& axial flux (Qg)—and the U1)g charge—
iciBg: = CE<82+ EM(CF)>CF1 i.e., theB axial flux (-Qg)—are not conserved. However, in
2 such a situation the remainingJ symmetry guarantees the

conservation of a new quantity—namely, tsam of the
Ly tfon. 1 U(1)r and U1)g charges. That isQr+(—Qg) has to be con-
—icgBoe=cp( B™+ EM(CF) Cr- served. The total axial electromagnetic fiQ&=Qr-Qg ap-
pears then as the conserved charge of tli&) dymmetry
The desired conservation law comes now after substractingssociated with the breaking pattern (14t ® U(1)g
the above equations: —U(D)gsp.
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There are two different and interesting physical situations An important feature of Eq(30) is the existence of an
in which the analysis described above for systems in whictinherent spatial modal interference of nonlinear origin, rep-
F-B interactions can be neglected is valid. The first one igesented by the nondiagonal nature of the nonlinear matrix
general forward pulse propagation, which naturally takedunction in the modal indicesM,, #0 (n#n’)—in the
place in the frequency domain or, equivalently, in the timemost general case. In some special situations, however, this
domain. The second one is monochromatc quasimono- modal interplay can be zero or it can be just neglected
chromatig nonparaxial forward evolution describing the (M,,=0 or M,y=0, whenn#n’). Exact cancellation of
nonlinear propagation of spatial structures. It is remarkablenatrix elements occurs by symmetry considerations in most
that despite the distinct nature of both phenomena, they areases. A simple example would be given by a rotationally
just particular cases of FBE'’s and, thus, equally described bjnvariant system. Its linear modes are solutions with well-
the same formalism. We will study them separately in thedefined angular momentum and, consequently, the modal in-
next two subsections. dex of the spectral functiod! is thus labeled by the angular
momentum index. In such a case, angular momentum con-
servation requires that no mixing of spectral components
with different angular momentum occurs, thus eliminating

When one neglect$-B interactions—for example, by nondiagonal terms in the nonlinear matrix function corre-
eliminating backward components—the most general fornmsponding to different values of the angular momentum index
of FBE's is given by Eq(28), which in continuum-frequency |[; that is,M has to be diagonal in these indicé8;,, ~ &,.
notation reads In other cases, some nondiagonal matrix elements can be
negligible because of the different shapes of linear modes
amplitudes involved in the calculation of the overlapping

A. Forward pulse propagation

il (0,2) = (w2 +

2fB(w) integrals appearing in the definition bf (for example, for a
, Kerr cubic nonlinearity, M,y ~ C,.,Crf 2y br bnbr)- I
x> J do'Mpy(w,0';cp)ct (0',2). some cases, these integrals can be very small for reasons that
n’ do not rely on the presence of particular symmetries.
(30) Whatever these reasons may be, in the case that modal

) N ] ) interplay does not exist or this can be neglected—that is,
The nature of the nonlinearities defines the particular form ofynenm,,, =0 orM,,, =0 if n# n’—then Eq(30) decouples

the nonlinear modal matrix functioM, (w,®’). According jnto independent equations for every mode index,
to what was explained in Sec. lll, the functional form of the

nonlinear functior- and, thus, of thé\l matrix function can . d _ n

be systematically constructed out of the mode amplitudes of '(;_ZCF(“”Z) = Br(@)Cr(w.2)

the linear propagation problem together with the standard

nonlinear coefficients(xy®,x®,...). Thus, many formal L1 fdw’M (00w 2)
properties ofM will be inherited from linear modes. The 28,(w) M R
dependence dfl on modal indices and frequency will have (31)

much to do with the particular dependence of the linear
mode amplitudes on spatial coordinates and frequency. Difwhich, in turns, leads to independent conservation laws for
ferent physically well-grounded assumptions on the properthe different modalF and B axial quxes:dQ(F”)/dz:O and
ties of M on modal(and polarizatiopindices and frequency dQ"/dz=0 (Q" = [ B, c” and QW = [, B.cl" cl).
can be then made by analyzing linear mode characteristics. In nonlinear propagation in optical single-mode fibers it is
The second element to take into account is the extension @ommonly assumed that the spatial dependence of the elec-
the frequency spectrumi(w). A considerable simplification  tric propagating field is just given by the amplitude of the
is achieved for sufficiently narrow spectra, whereas widefundamental mode of the fiber. In our context, this statement
bandwiths, such as those naturally appearing in highly nonis equivalent to say that the matiit is one dimensional and
linear fibers(e.g., in supercontinuum generatjpwould de-  involves the fundamental mode only. The equation describ-
mand one considers the frequency dependence of3Byin ing forward nonlinear propagation in such a fiber would be
its total extent. Eq. (31 for n=0 (fundamental mode Even if the fiber is not

It is clear that, in the most general case, Bf) involves  single mode but involves modes widely separated by large
an intrincate dynamics since the nonlinear matrix functiongaps ing's, as in some highly nonlinear microestructured
M v(w,»") leads to nonzero couplings between differentfibers, the same equation can still remain approximately
frequency, modal and even polarization componérgsall  valid. The reason is that in such a case intermodal interac-
that polarization indices are includedrhus, even starting tions are relatively suppressed with respect to modal self-
from a simple spectral, single-mode, single-polarization coninteractions because of the very different forms of linear
figuration, if the system had no physical mechanism to mini-mode amplitudes, originated by both the discrete symmetry
mize the great variety of couplings induced by, spectral  of the fiber and their very different values @f leading to
evolution, as described by E@O0), would generate a more zero or small overlapping integrals and, thus, to small values
and more complicated spectral function by exciting new fre-of M,,, whenn# n’. The resulting approximated equation—
quency, modal, and polarization components. Eq. (31) restricted to the fundamental mod@&=0)—is
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equivalent to the forward Maxwell equation for a highly non- ) 12 1o
linear microstructured fiber used to adequately describe su- - '(9_2(¢F— ¢e) — Lo (dr + dp) =Lo M), (37)
percontinuum generation in this type of fibg&j.

respectively. By applyingid/ z) to Eq.(36), susbtituting Eq.

B. Nonparaxial spatial evolution (37) into the resulting equation, and taking into account that
Monochromatic (or, in practice, quasimonochromatic gqu(iil-c:r?& one gets the Helmholiz-iype nonlinear wave

propagation is also a particular situation that can be de-
scribed using FBE’s. Equationd6) and (17) remain cer-

tainly valid when the frequency content of tReandB spec- (
tral functionscy andcg is restricted to a single frequenay.

In such a case, only intermodal interactions or modal self-
interactions(including polarization play a role since the
nonlinear matrix function has a trivial dependence on fre-

;quencyMnn,(w,\;Iu ﬂf )= MtP“'(IT’O’;)Bfgedbby the _propggat;on if M0 then backward components are necessarily gener-
requTjnc;:ﬁ)o. flt_ema 'Cj y,( ) '\SA e(c?r{;/ln o(r e.r )0 ated: ¢g # 0 (even if they did not initially exigt Therefore,
symplify the notation.fon= fn(wo), Man (€)=Mny(@0:C),  there eyists a close link between backward amplitudes and

§+Vf+k%nS+M(¢))¢:o.

As mentioned in Sec. Il and is also evident in KE85),
the complete elimination of backward componefitg — 0)
‘implies the vanishing of nonlinearitié#1 — 0). Conversely,

c(2)=c(z; wo)] the nonlinear functiorM. Certainly, in most experimental
9 situations in which an axially invariant system is axially il-
—i—C}2) = BonCR(2) + —— E Mov(©)C(2), (32 Iqminated along a privilegetsay, forward direction exclu-
Iz 2Bon”; sively, backward components are small as compared to for-

ward amplitudes. However, as backward FBE's show, they
cannot be identically zero in the presence of nonlinearities.

ad .
—i—Ccl(2) = - BonCh(2) - E M,y (c)cy(2), (33 They are exactly zero on!y in the case th_e system behgves
Iz 2Bon”; linearly. In such a case, since the system is axially invariant
and is illuminated in the forward direction only, there would
andc=cg+Cg. be no axial inhomogeneities that could produce linear reflec-

Since the previous FBE's involve spatial modal indicestions. Thus, small backward amplitudes are expected to be
only, it is interesting to write them also in the spatial domain,generated by small nonlinearities so thg— 0 when M
so that spatial degrees of freedom appear explicitly. This—0 (linear casg Our interest lies now in the quantification
process is the inverse of the one we followed to obtain thef the relation betweenpg and M in the small backward
second-order modal equation in Sec. IlI; that is, we re-amplitud regime(¢g=3Spg<1).
introduce the spatial field amplitudes ageg(X,y,2) In order to clarify the calculation, we parametrize the
LY B(z)¢n(x y), ¢>n being the eigenfunctions of the linear “size” of the nonlinearity by redefining the nonlinear func-
ODEYatOH-o—V +kon0 Bon are the eigenvalues of the op-  tion asM=yM, wherey is a dimensionless real parameter. In
erator andny=n g is the inhomogeneous refractive index, this way, we can approach the linear césk— 0) by taking
both evaluated at the fixed frequeney=Kky/c, respectively.  the limit y— 0. It is easy to realize thag has to be propor-

The outcome is tional to the input powety~ P wheny is small. CertainlyM
is a function of the input power verifying thél —0 asP
9 L L2 1/2 —0. Assuming, as usual, that this dependence is analytical
= M , 34 T
( Iaz >¢F (#)é (39 this implies thatM ~ P whenP— 0. The same argument for

v leads toM ~ y for small values ofy. Therefore, the small-
P v and smallP regimes are, in fact, the same. From a physical
(— i—+ Ll’z) dg=— —|_01’2|v|(¢)¢ (35)  point of view, this provides a physical meaning to the dimen-
9z sionless parametey in the small nonlinearity regimey

together with b= e+ s, The nonlinear termM(¢)d in- ~ P. Note that, in the general case of a nonlinearity that can

: L . . be expanded in power series i, the auxiliar nonlinear
cludes all types of nonlinearities in the spatial domain thai = .
permit an expansion in power series. The usual example itgmctlon M can depend itself ory. However, for our pur-
the Kerr nonlinearityM(¢) ¢~ (¢* ¢) . poses, it is enough to consider thdt=0(7y) [and thusM
It is also an interesting exercise to prove that one carrO(1)] because we are going to be interested in leading-
derive the standard second-order wave equation from therder terms.
first-order spatial FBE'$34) and (35). If we sum and sub- Following the reasoning above, we consider the total field
stract Eqs(34) and(35), we obtain amplitude as the sum of a large forward amplitude and a
small backward amplitudep= ¢+ 5¢pg. Besides, the small
d 112 _ backward amplitude is a function of the nonlinear parameter
- 'a_z(d’F + ¢p) ~ Lo (dr ~ dg) =0 (36) v— 8¢pg= S¢pg(y)—and it has to verify thabepg(0)=0, since
we are assuming that no backward radiation is present in the
and absence of nonlinearities. The nonlinear function can be then
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expanded  as  M(¢e+d¢s)=M(dp)+(IM/ |4 ) Sbg de(z+ €) = expie Lo+ M(¢(2)]1"%de(2).
+0(8¢g)?. Substituing the total amplitudé= ¢>F+5¢B and
the expansion o in Eq.(35) and keeping the leading-order
terms ind¢g only, one gets

This evolution operator is not unitary because the operator
Lo+M(¢e(2), despite it being self-adjoint, it is not positive
definite, inasmuch as it can have negative eigenvalues corre-
{ a9, L1/2+ 1- 1,2( M(de) + )]5¢ sponding to evanescent wavgd < 0). The loss of unitarity

(7 20 F F e B is due to this evanescent modes leading to the nonconserva-
tion of the integralf ¢ .

1
=~ ~Lo"M(¢e) g + O(8e)°.

. . . . VII. CONCLUSIONS
SinceM=0(v), we can find the leading-order term 4nfor

S¢g from the previous equation: The experimental availability of high nonlinearities is ex-
1 1 pected to unveil a number of new effects that will force us to
Sba=—=-iZ+ Lllz) L=12\ +0(7), extract information from Maxwell's equations in a more ac-

e 2( iz 0 (¢e) e+ O(7) curate manner. In this paper we shed some light on the prob-

lem of revealing the close interplay between backward com-
ponents and nonlinearities in axially invariant systems. With
a minimum amount of approximations, we have been able to
T 2 1 1 find a system of two coupled first-order equations for the

—i Lo k= Lo M(e) ¢ + Slo forward and backward spectral components of the electro-

magnetic field, the so-called forward-backward equations.

so thatdgyg is alsoO(y). We can proceed analogously with
the forward FBE(34) to find

2 The explicit appearence of forward and backward compo-
(M(d’F) * ¢F dpe >5¢B+O(5¢B) nents as well as of their nonlinear couplings in these equa-
, i i tions is useful to quantify under which conditions nonlin-
which, after introducingy dependencegM=0(y), d¢g  early generated backward components can be relevant in a

=0(y)], becomes new scenario of highly nonlinear effects.
9 From the formal point of view, the FBE'’s are especially
(— i— - Ll’z) ¢ = Lol’ZM(qu)d)F +0(y)%. (38 appealing in the sense that they admit a simple bispinor rep-
7z resentation that closely resembles that of a Dirac equation for
Therefore, neglecting backward components is equivalerthe positive and negative components of a fermion wave
to consider FBE’s up t®(y)? terms. Or, equivalently, the functionin 1+1 dimensions. Similarly to the Dirac equation,
pure forward equatiorithat is, FBE's with¢~ ¢ and ¢z the use of the algebraic properties of the spinor FBE’s allows
~0) is just a weak-nonlinearity approximation. More spe- Us to obtain the conserved quantities associated with them in
cificaly, it is the leading-order contribution in the nonlinear an elegant way. In the same manner, all conserved quantities
parametery to FBE’s. For this reason, it is possible to find also admit an interpretation as conserved charges associated
equivalent forms to the forward equation different than EqWith phase symmetries.
(38). An interesting alternative version of the forward equa- The dimensional reduction is a remarkable issue of the

tion is easily obtained by using the property modal approach followed here. The original 3+1 dimensions
(3 spatial, 1 frequengyof the starting wave equation for
LY2p + = Lol/ZM(¢F)¢F+O(7)2 E.(X,y,2) [EqQ. (1)] are reduced to 1+11 spatial, 1 fre-

guency in the FBE's. The modal approach is a way of “in-

1 tegrating out” the transverse spatial degrees of freedom
L1’2<1 + —LglM(d;F)) ée +0O(y)? andy). Of course, the coupling between tranverse degrees of
2 freedom in Eq(1) does not dissapear in FBE’s. It transforms
=[Lo+ M(¢pg) [¥2¢he + O()?, into the couplings between the different modal components
_ ) of the spectral functior,, which are mathematically encoded
which allows us to write Eq(38) as in the nonlinear matrix functioivl,,. For the case in which
J only a few modal components are relevant, the process of
- io,,_z(;bF:[LO"' M(e) 12 + (7). (390 dimensional reduction provides a dramatical simplification.

Typical envelope equations for propagating pulses are the

The previous version of the forward equation has beenesult of a similar process in which the propagation of only
used to simulate monochromatic nonlinear propagation obne linear modéusually, the fundamental mogis assumed.
spatial structures in photonic crystal fibgd<] in the non- The FBE'’s, however, provide a natural way of dealing with a
paraxial regime. Despite the pure forward equation beingnore complex modal structure and, moreover, they allow
first order inz, it has an intrinsic nonparaxial nature. Unlike one to directly work with the frequency content of the propa-
in the nonlinear Schrodinger equation, the standard integraating field—that is, with its spectral componenjtw,2). In
[ ¢ is not a conserved quantity. This can be clearly seetthis sense, there is no need to resort to the concept of pulse
if one writes the evolution operator associated with &9) envelope(unless one wants to make contact to other ap-
for an infinitesimal axial step: proaches For the same reason, the FBE's are equally suit-
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able to describe pulse propagation with extremely largehese effects would correspond to spatio-temporal phenom-
bandwiths since no assumption on the formogfw,2) is  ena, in which the spatial and temporal degrees of freedom of
required. Ideally, they could handle any type of temporal-the electric fieldE(x,y,X,t) could not be factorized.
spectral behavior provided the only assumption needed, the Sumarizing, the FBE’s provide a general framework to
“scalar approximation{(in its strong or weak form—see Sec. deal with nonlinearities in axially invariant inhomogenous
), is reasonably fulfilled. dielectric media, limited only to a reasonable validity of the
Another scenario in which these equations can be usefdkcalar approximation({in its strong or weak form As we
is that in which there are relevant spatio-temporal effectshave seen in Sec. VI, its generality can be made evident after
The FBE’s inherently include couplings between frequencyanalizing two apparently disconnected cases: forward pulse
and modal indices through the nonlinear matrix functionpropagatior(a purely temporal phenomenoand monochro-
M,v(w,w";c). Since modal indices correspond to spatialmatic nonparaxial evolution of spatial structur@s purely
amplitudes of linear modes, the nonlinear matrix functionspatial phenomenogn Both are equally and naturally de-
M, (w,o’;c) is constructed out of these amplitudes as arscribed within the FBE formalism. The fast progress in non-
overlapping integra(Sec. 1. Thus, part of the frequency linear optics experiments provides effects of increasing com-
dependence oM, is due to the explicit dependence of plexity both in the spatial and time domains as well as in the
linear mode amplitudes on frequency. In the ultrawide specinterplay between forward and backward components.
trum regime, this dependence cannot be neglected and, thef8trong correlations between spatial and time domains and
fore, the contribution of several spatial modes can producérward and backward components will play a more and
simultaneous couplings between modal indices and frequernore important role. In this context, the FBE's can be a
cies which can be naturally treated in the framework of thesuitable and convenient tool to encompass a variety of dif-
FBE's. In terms of the original 3+1 Maxwell's equations, ferent phenomena within a common framework.
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